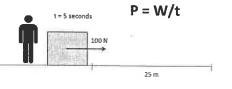


Work

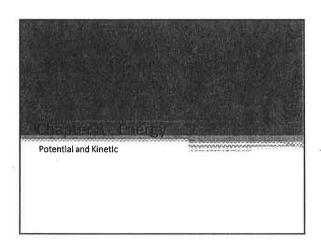
- "An object's motion is related to both force and how long that force acts..."
- WORK (W) = Fd
 - Force = N
 - Distance = m.
- Measured in JOULES (J)


Work • How much work is done on a box if you pushed with 100 N for a distance of 25 meters? W = F d

Power

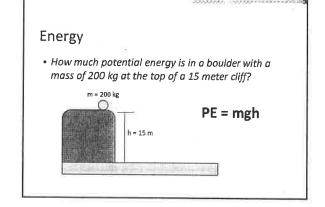
- "How fast work is done..."
- POWER (P) = Work (W) / Time (t)
 - Work = Joules (J)
 - Time = Seconds
- Measured in WATTS (W)

Power


 In the same problem, if it took you 5 seconds to push that box the distance of 25 meters, how much power was used?

Efficiency

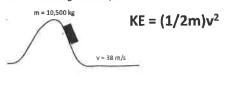
- "How well an object transfers energy during work..."
- Efficiency = $(W_{output} / W_{input}) \times 100$
- Measured in a percentage (%)


Efficiency	
	at is your efficiency if it took box but only measured 9500
10	W _{output} /W _{input} X 100
- S Disasterioral	25 m

What is energy? • ENERGY: The ability of an object or system to do work. • IDEA: Apply a force...move an object. Q: How are FORCE and ENERGY connected?

Energy "An object may store energy...and hold it ready to use". POTENTIAL ENERGY: PE It has the "potential" to do work. Examples: Gasoline. Food. Gravity.

Energy • Gravitational Potential Energy: • Work required to elevate objects against gravity. • Measured in Joules (J) • Calculate • PE = mgh • m = mass (kg) • g = gravity (10 m/s²) • h = height (m)

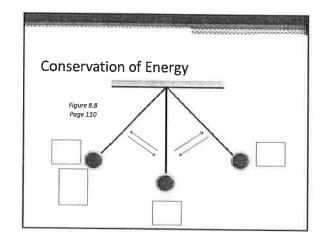


Energy

- "If an object is moving, then it can do work."
- Kinetic Energy: **KE**
 - Energy in motion; measured in Joules (J)
- Calculate
 - $KE = (1/2 \text{ m})(v^2)$
 - m = mass (kg)
 - v = velocity (m/s)

Energy

 How much kinetic energy is in a roller coaster at the bottom of the first hill if it has a mass of 10,500 kg and is traveling at 38 m/s?



Conservation of Energy

- "Energy cannot be created or destroyed."
- "It can only be transferred from one form to another."
- IDEA:

PE = KE

The amount of PE in a system is EQUAL TO the amount of KE in a system.

Force and Energy
Q: How are FORCE and ENERGY connected?
ENERGY is the ability to do WORK.
WORK depends on FORCE and distance.
Therefore More FORCE = More ENERGY (WORK = ENERGY)