Newton's Three Law of Motion QUIZ REVIEW SHEET

stablished Goals:

- ✓ Recognize that inertia is a property of matter that can be described as an object's tendency to resist a change in motion and is dependent upon an object's mass (Newton's first law of motion).
- ✓ Determine the effect (direction and magnitude) of the sum of the forces acting on an object (net force).
- ✓ Using information about net force and mass to determine the effect on acceleration (Newton's second law of motion)
- ✓ Analyze force pairs (action/reaction forces) when given a scenario and describe their magnitudes and directions (Newton's third law of motion).

Essential Understandings:

- > The mass of an object DIRECTLY affects the inertia of that object.
 - o If you increase the mass, you increase the inertia and vice versa.
- > The force on an object DIRECTLY affects an object's acceleration.
 - o If you increase the force, you increase the acceleration and vice versa.
- > The mass of an object INVERSELY affects an object's acceleration.
 - o If you increase the mass, you decrease the acceleration and vice versa.
- > For every action, there is an EQUAL and OPPOSITE reaction.

Essential Questions:

- 1. What is the first law of motion?
- 2. What is inertia?
- How does inertia relate to mass?
- 4. What is the second law of motion?
- 5. What is the difference between weight and mass?
- 6. Why is friction considered to be a force?
- 7. What force acts on EVERY OBJECT?
- 8. What does it mean for an object to be in "equilibrium"?
- 9. What is the third law of motion?
- 10. What does "equal and opposite force" mean?

Unit 2: Newton's Laws of Physics-MATH REVIEW PROBLEMS

Equations:

w = mg

F = m a

 $a = \frac{F}{m}$

 $m = \frac{F}{a}$

Constants:

 $g = 10 \text{ m/s}^2$

10 N = 1 kg = 2.2 lbs.

PROBLEM: Complete and SHOW WORK on all problems.

- 1. Calculate the weight of a person with a mass of 50 kg:
- 2. Calculate in Newtons the weight of a 2000 kg elephant:
- 3. An apple weighs 1 N. What is its mass in kg? What is its weight in lbs?
- 4. If forces of 10 N and 15 N act on an object in the same direction. What is the net force on the object?
- 5. If forces of 10 N and 15 N act in opposite directions on an object, what is the net force?
- 6. Calculate the horizontal force that must be applied to produce an acceleration of 1.8 m/s² for a 1.2 kg puck on a horizontal friction-free air table:
- 7. What is the acceleration of a 747-Jumbo Jet with a mass of 30,000 kg in takeoff when the thrust (force) for each of its four engines is 30,000 N?
- 8. Calculate the acceleration of a 5 kg box on a table if you push with a horizontal force of 15 N. The force of friction is present and is 5 N.
- 9. Find the mass of an object that has a force of 30 N applied to it and is accelerating at 7 m/s²:

Review: Newton's Three Laws Chapters 4-6

Chapter 4

- Newton's First Law
 - o Inertia: object in motion stays in motion
 - Stationary object, stays stationary
 - Unless force acts on it
- Mass= kilograms
 - o More massive means more force required
- Weight= force of gravity on an object
 - o 2x mass = 2x weight
 - o 1 kg = 2.2 lbs
 - o 1 kg = 9.8 N
- W = mg
- Net force = total of all forces
- Equilibrium = net force = zero
- Natural vs. violent motion
- Friction: touching resistant force
 - No friction= repeating motion

Chapter 5

- Newton's Second Law
 - io F = m x a
 - o More mass = less acceleration with same force
 - o Inverse = ↓ ↑
 - o Directly = ↑ ↑ or ↓ ↓ equal in magnitude
- Pressure = force per area
- Free fall: terminal velocity
 - Air resistance = gravity
 - Net force = zero
 - Acceleration = zero

Chapter 6

- Newton's Third Law
- Interaction among 2 objects
 - o Equal and opposite
- Action/ reaction pairs: interchangeable
- Difference depends on mass
- Same force, different reactions